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Background:
1979-1985: Moscow State Technical University 
(Bauman)
MSc in Mech. Eng.: 
Flight dynamics, guidance and control

1985-1991: State Research Institute of 
Aviation Systems (design bureau) 
Engineer – Senior Engineer (project leader)
Autonomous guidance system for TU160  

1994-1998: Moscow Aviation Institute
PhD in Mech. Eng.:
Algorithms for real time monitoring of thermal 
loads in flight vehicle structures
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Academic Carrier

1999-2000: Polytechnic school, University of Nantes, PDRF 
Inverse problems in polymer extrusion

2000-2003: The Weizmann Institute of Science, Israel, PDRF 
Multigrid methods for solving control problems (with Achi Brandt)

2003-2005: University of Strathclyde, Civil Engineering. Dept., Glasgow,
PDRF 
Development the adjoint for ICOM (Imperial College Ocean Model)

2005-2006: University Joseph Fourier, IMAG, Grenoble, PDRF 
Coupling and data assimilation in hydraulic modelling

2006-2013: University of Strathclyde, Civil Engineering. Dept., Glasgow, 
Senior RF, NERC advanced RF, open end contract 
Uncertainty quantification and design in variational DA

2013- : IRSTEA, Montpellier, Senior RF
to be presented later
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Advanced uncertainty analysis and optimal design in 
variational estimation (data assimilation)

Uncertainty analysisUncertainty analysis: 
- intrinsic feature of most time-sequential estimation methods 
(filtering, ensemble and particle methods), however a difficult 
issue in variational estimation! 

Optimal design:Optimal design: 
- design of optimal observation arrays or trajectories (in 
geophysical data assimilation) 
- design of test signals (in parameter and structural estimation 
problems)
- optimal shape design (in aero/hydrodynamics).

A pivotal object in these applications – HessianHessian
Major difficulty – high dimensionshigh dimensions, CPU timeCPU time  

5



9

Advanced uncertainty analysis and optimal design in 
variational estimation (data assimilation)

1. HessianHessian – second derivative of the DA cost-function or design 
function  

2. Truncated HessianTruncated Hessian – linearised Hessian, obtained by ignoring 
second-order terms

3. The later is also known as Controlability GramianControlability Gramian, Fisher Fisher 
Information MatrixInformation Matrix

4.  HessiansHessians are key mathematical objects in optimal and 
feedback controls, estimation, information and optimal experiment 
design theories

6
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General formalism - 1
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General formalism - 2
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Analysis error covariance
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Novel results of the paper:
 

- clean formulations, both in terms of operators and evolutionary 
equations (continuous time-space)

- computation of the inverse Hessian using the LBFGS

- a unique set of numerical examples, showing dependence of analysis 
error variance and correlations on transport mechanisms and 
parameters of the background covariance

Analysis error covariance

Well known fact:
 

- analysis error covarianceanalysis error covariance can be approximated by the inverse of the 
truncated Hessiantruncated Hessian (Hessian of auxiliary control problem)
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Optimality system:

Hessian-vector product:

Cost-function and gradient

Truncated Hessian-vector 

product:

Gauss-Newton versus Newton
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Example of the inverse Hessian obtained by LBFGS
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Analysis error covariance: parameter and boundary value 
estimation problems
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Analysis error variance and correlation matrices for
parameter and boundary value estimation problems

Parameter estimation problem

Truncated Hessian-vector product:
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Illustration: variances and correlation matrices
Diffusion coefficient estimation problem

Boundary flux estimation problem
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Main results:

1. In the linear case, the estimation/analysis error covariance is 
equal to the inverse Hessian 

2. In the non-linear case, the estimation error covariance can be 
approximated by the inverse Hessian computed at the “truth”

3. The approximation error consists of:
a) linearisation error
b) origin error (due to difference between the optimal solution and 

the truth). Optimal solution may not always be achieved during 
minimization procedure

How to reduce this error?
substitute 'local' estimation of the covariance by 'global' estimation

16



21 17

Effective inverse Hessian
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Effective inverse Hessian - 1

1. New estimate is suggested

2. A motivation is provided (no rigorous proof is available)

3.1 Implementation: 'pseudo-randompseudo-random' (requires ensemble of opt. solutions)

3.2 Implementation: 'quasi-randomquasi-random' (does not require ensemble of optimal 
solutions)
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All projected Hessians are presented in the limited-memory form via 
eigenpairs!

Efficient implementation using double preconditioning:

Effective inverse Hessian - 2
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Effective inverse Hessian - 3
Relative error in variance and error in correlation matrix, by the 
inverse Hessian and the effective inverse Hessian
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Bayesian posterior covariance
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Bayesian posterior covariance - 1

Analysis error covarianceAnalysis error covariance:

Bayesian posterior covarianceBayesian posterior covariance:

Analysis error pdfAnalysis error pdf::

Bayesian estimate pdfBayesian estimate pdf:

22

Bayesian posterior covariance and analysis error covariance are 
different objects (due to different centring of data)
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Bayesian posterior covariance - 2
Bayesian posterior covariance via Hessians: double product formula

b) global  global (new)

a) locallocal (can be found in the literature on statistics)

Efficient implementation using double preconditioning:
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Bayesian posterior covariance - 3
Numerical illustration in terms of the relative error:

Red – approximation by the 'effective' inverse Hessian:

Green – approximation by the 'effective' double-product formula
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Bayesian posterior covariance - 4

Main results:

1. Bayesian posterior covariance and analysis error covariance 
are different objects (due to different centring of data)
----------------------------------------------------------------------------------------

2. They coincide in the linear case
---------------------------------------------------------------------------------------

3. Analysis error covariance relies on the truncated Hessian and, 
therefore, no 'second-order' information is involved
---------------------------------------------------------------------------------------

4. Posterior covariance involves both truncated and full Hessians 
(second derivative)
---------------------------------------------------------------------------------------

5. In practice, the double-product formula is unstable in local 
version and is only useful in 'effective' implementation
---------------------------------------------------------------------------------------

6. 'Effective' estimates can be built using a relatively small sample 
(L<100)

Since we obtain a sample of Hessians (either truncated or full), 
one may access higher moments of the posterior distribution !
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Gauss-verifiability
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Gauss-verifiability - 1

To check gaussianity of the estimator one can use classical classical 
tests for multivariate normalitytests for multivariate normality (Jarque-Berra, etc.):

1. Local (computed at a reference solution)
.

2. One integral value characterising normality of the optimal solution vector
.

3. Requires inversion of the sample covariance (deficient rank matrix)

New multivariate normality test is suggested:New multivariate normality test is suggested:

1. Global (computed in the vicinity of a reference solution)
.

2. Distributed value (defined for each element  of the control vector)
.

3. Requires inversion of the Hessian (full rank matrix )
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Coexistence principle:Coexistence principle:
- estimate belongs to a certain confidence level of the 'true' distribution;
- 'truth' belongs to the corresponding confidence level built for the 
correct posterior distribution

Gauss-verifiability - 2

Coexistence breach:Coexistence breach:
- 'truth'  falls outside the confidence region built for the Gaussian 
posterior distribution, which approximates the correct one

28
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Gauss-verifiability - 3

Coexistence measureCoexistence measure (to quantify coexistence breach):

Approximate coexistence measure:Approximate coexistence measure:

Deconvolved coexistence measure:Deconvolved coexistence measure:
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Gauss-verifiability - 4

Assume:

Deconvolved coexistence measure:

Finally:

30



35

Gauss-verifiability - 5

31
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1. New multivariate normality test is suggested: global, distributed 
value (i.e. for each element of the optimal solution vector)

Gauss-verifiability – 5: Main results

32

2. This test allows to reveal the areas where the deviation from 
gaussianity is most noticeable. Knowing these areas is important 
(different options, e.g. local application of particle method of MCMC )  

3. If the analysis error covariance is estimated via the 'effective' 
inverse Hessian, the distributed coexistence measure comes as by-
product for free
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Sensor-location design problem
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Problem statement

Data assimilation cost-function:

Truncated Hessian associated with cost-function:

Truncated HessianTruncated Hessian equivalent to Fisher Information Matrix Fisher Information Matrix (FIM)! 
Most (alphabetical) design criteria are based on FIM.

34
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Design function gradient

Due to the absence of inexpensive methods for computing the gradient 
of the design function, its minimization is generally performed using 
gradient-free methods ! 

35

some expressions

A new mathematical object: adjoint to the Hessian derivativeadjoint to the Hessian derivative -

All elements required for computing these expressions are accumulated 
during construction of the Hessian itself (via eigenpairs by Lanczos) !  
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Main results

The gradient of the design function can be computed at a negligible 
cost (in terms of CPU time) in the process of computing the design 
function itself

This is an important step toward the gradient-based optimization in 
optimal sensor location problem

Approach that can be used in other design problems, such as the 
optimal test-signal design for parameter identification, or optimal  
shape design

36
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Control set design problem

37
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Motivation
River flow model and discharge estimation problem - 1 
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Motivation:
River flow model and discharge estimation problem - 2

 

 

off-take or tributary

39
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Motivation:
discharge estimation problem – what to control and how?

SIC model does not support supercritical flow (as majority of models using the 
Preissmann scheme ),  and drying/wetting processes. As long as these flow states are 
encountered, the code execution stops with an appropriate error message.

These states does not normally occur when the model runs to describe physically 
meaningful conditions. However, during solving estimation problems, the current 
estimates may not be supported by the model ! (comment) 
As a result, the estimation process breaks down.

Some parameters enter the model in a highly non-linear way, for example geometric 
parameters. Introducing these parameters into the control vector leads to ill-posedness 
(non-uniqueness (equifinality) / multiple local minima), which requires the global 
minimum search !  
     

Careful design of the control set is necessary !
40
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Question: – what to control and how?

41
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Control set design: design function
Notations:

Design function error covariance can be represented by a limited number of 
its eigenvalues / eigenvectors, given the product                             .

The above presented material is more or less well established results known 
as “variational uncertainty quantificationvariational uncertainty quantification”.

42
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Control set design: partial control -1

43
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Control set design: partial control -2

Elements of the covariance are expressed via blocks of the Hessian ! 

44
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Control set design: NA results, case A

45
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Implicit (idle) control

46



53

Inverse Hessian by multigrid approach

47
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New mathematical concepts introduced ... 

1. Multilevel eigenvalue decompositionMultilevel eigenvalue decomposition

2. 'Effective' 'Effective' approximations for analysis error/ posterior 
covariances

3. New multivariate normality test: coexistence measurecoexistence measure

4. Adjoint to Hessian derivativeAdjoint to Hessian derivative

5. Control set designControl set design

48
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Application: Surface Water and Ocean Topography (SWOT) 
mission

One of tasks of the mission is to monitor river discharge in ungauged
basins. 
Main difficulties: 
- low accuracy of observations, low temporal frequency
- insufficient data on the river bed geometry and roughness, 
  properties of the catchment area of interest and  lateral 
  inflows / off-takes 

Variational DA in river hydraulics

49
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Variational DA in river hydraulics

Model: SIC^2 (Simulation and Integration of Control for Canals) - 
hydraulic network model, developed by IRSTEA (former CEMAGREF), 
since 1990.
Based on Saint-Venant equation (for a single reach), includes:
- coupling between reaches 
- complex description of river bed
- storage areas, most of known hydraulic devices                           

Main contributions:

1. development of the adjoint and TL counterparts for SIC^2 (using 
Automatic Differentiation). Presently, it is the only known stable adjoint 
for models of this type (Mascaret, Mike11, ISIS, etc.)!
-

2. approach for solving discharge estimation problem under strong 
uncertainty in major model parameters: simultaneous estimation of 
discharge, bed elevation and bed roughness coefficient, iterative 
regularization
-

3. PhD by Hind Oubanas
50
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Variational DA in river hydraulics

51
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Variational DA in river hydraulics

52
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Variational DA in river hydraulics

53



GR4J is a daily lumped four-parameter rainfall - runoff model, global (catchment) 
Inputs: P – the rainfall depth, E – potential evapotranspiration (PE)
Output: Q - runoff   

Parameters:
      - maximum capacity of the production store;
      - coefficient in groundwater exchange term;
      - the routing store reference capacity ;
      - time-base of unit hydrographs   
 

X1

X 2

X 3

X 4

State variables:
      - water content in the production store;
      - water content in the routing store 
S
R

Initial state:
S(t=0) , R(t=0) , Pr(t=0, t=−dt , t=−2dt , ...)

Types of estimation problems:
      - parameter calibration;
      - initialization
      - boundary control: P(t ) , E(t)

Variational DA in hydrology (GR4J)

54



COST_INI   =   18103.0 
COST_FNL =   11534.0 

Parameter calibration problem:

Variational DA in hydrology (GR4J)

55



Variational DA in hydrology (AIGA)
AIGA is an hourly lumped three-parameter rainfall - runoff model, distributed over 
catchment, represented by pixels 
Inputs: 
P – the rainfall depth given by discretized precipitation map
E – potential evapotranspiration (PE)
Output: Q – runoff
Routing scheme – 

Resolution  - 1 km^2, 
parameters: capacities of transfer and production reservoirs, transport speed
   

56



Variational DA in hydrology (AIGA)
Illustration:
   

Subject of the PHD thesis started at the end of 2017
  
Thesis title:
Data assimilation applied to a distributed hydrological model: regional 
calibration and assimilation of flows observed in the AIGA method

PhD student:  Maxime Jay-Allemand

The thesis will be co-supervised by Patrick Arnaud (Irstea, UR RECOVER, Aix-
en-Provence)

57



Future plans

Another PhD funding anticipated
-

Thesis title:
Assimilation de données pour améliorer les modèles de qualité de l’eau : vers un 
indicateur de pression azoté
-

2018-2021 in collaboration with Irstea Antony

Global sensitivity and functional uncertainty analysis using numerical derivatives 
(LEFE-MANU project, in collaboration with Victor Shutyaev) 
Important results obtained, to be presented in Clermont-Ferrand

General direction of the group G_EAU:
development of integrated hydraulic-hydrology 
model capable of assimilating different types of 
data, including satellite-born, radar, in-situ 
(gauge if any), etc. 

58
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Explicit control:
inclusion certain input variables into the active control set. 

Implicit (idle) control:
a way of taking into account uncertainty in certain input variables without 
considering them as active controls: idea related to the 'nuisance parameter' 
concept, common in classical and Bayesian statistics.

Nuisance parameters – inputs which affect the design function (QoI) indirectly, 
i.e. via estimates of other inputs, otherwise are out of interest.
Examples: 
- discharge estimation under uncertainty in bathymetry and bed roughness;
- heat flux at the ocean surface in the presence of model error.
Counterexample:
- forecasting.

Implicit treatment of uncertainty in nuisance parameters is generally achieved 
by modifying the likelihood function. In Gaussian case this can be done by 
inflating the observation covariance matrix.     

Question: – what to control and how?
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Inverse Hessian by multigrid approach
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Inverse Hessian by multigrid approach - 1
Consider symmetric operator in the limited-memory 
form:

Basic idea:
1. represent operator on the coarsest grid level

2. use available local preconditioner to improve its eigen-
spectrum

3. build a limited-memory approximation to its inverse, which 
forms the basis for the local preconditioner at the next finer 
level

4. move up one grid level and repeat
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Output:

Inverse Hessian by multigrid approach - 2
Multigrid 
structure:

Size of 
eigenvectors:



72

Consider symmetric operator in the limited-memory 
form:

Prolongation 
operator:
Restriction 
operator:

Inverse Hessian by multigrid approach - 2
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Inverse Hessian by multigrid approach - 3
Multigrid 
structure:
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Output:

Inverse Hessian by multigrid approach - 4
Multigrid 
structure:

Size of 
eigenvectors:
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Inverse Hessian by multigrid approach - 5

Illustration: super-compact storage 

Memory 
ratio: 
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Inverse Hessian by multigrid approach - 
remarks

1. 'Multilevel eigenvalue decomposition' is a new 
concept in linear algebra
2. This decomposition can be used for super-compact 
representation of symmetric operators (inverses, square-
roots) arising in discretization of partial differential 
equations: Hessian, Schrodinger operator, Laplace  
3. Multilevel eigenvalue decomposition can be used for 
observation space decomposition in Gauss-Newton and 
Newton solvers, thus enables direct parallelization of 
control problems
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Implicit control - motivation
Explicit control:
inclusion certain input variables into the active control set. 

Implicit (idle) control:
a way of taking into account uncertainty in certain input variables without 
considering them as active controls: idea related to the 'nuisance parameter' 
concept, common in classical and Bayesian statistics.

Nuisance parameters – inputs which affect the design function (QoI) indirectly, 
i.e. via estimates of other inputs, otherwise are out of interest.
Examples: 
- discharge estimation problem under uncertainty in bathymetry and bed 
roughness;
- heat flux at the ocean surface in the presence of model error.
Counterexample:
- forecasting.

Implicit treatment of uncertainty in nuisance parameters is generally achieved 
by modifying the likelihood function. In Gaussian case this can be done by 
inflating the observation covariance matrix.     
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Implicit control - notations
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Implicit control – formulation and main result - 1

Theorem:

The estimators associated to cost-functions                     and                     
are equivalent in the following sense:
for a linear mapping G  the optimal solution errors            and             are 
identical; thus the solutions           and           are identical;
For a non-linear G these solutions match approximately, if the tangent 
linear hypothesis is valid.
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Implicit control – formulation and main result - 2
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Implicit control – numerical model

-

The initial condition         is the quantity of interest, thus included into 
the active control set, whereas the advection uncertainty              is 
subjected to implicit treatment as a nuisance parameter !

Two cases:
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Implicit control – conditions of numerical tests
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Implicit control – inflated observation covariance

- filter to introduce temporal correlations
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Implicit control – numerical results (error)
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Implicit control – numerical results (st. dev.)
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Implicit control – numerical results (discharge)

Discharge estimation: 
the Garonne river at Tonneins, 2010 
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Implicit control – numerical results (discharge)
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Implicit control – applicability to forecasting
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Implicit control – biased uncertainty

One way to deal with a biased uncertainty would be to include both 
components into the control vector and consider minimizing the following 
cost-function:   

An alternative way is to include only the systematic part: 
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Implicit control – numerical results (st. dev.)

If uncertainty bias is not included into the 
active control set, the QoI estimate is also 
biased ! However, this does not significantly 
affect its variance !    
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Conclusions on the implicit control method
- influence of uncertainties in certain variables on the estimates of other 
variables can be eliminated/reduced by considering the former as 'idle' 
controls, which implies the implicit treatment via the inflated observation 
covariance (in essence, the modified likelihood) 

-  the difficulties with the control vector extension method include oversizing, 
solvability and robustness. The suggested method allows us to alleviate these 
difficulties, however the method would only be useful if the active and idle 
control sets are properly defined. Here we must use the control set design 
approach suggested at the beginning

- the proposed method is feasible for high-dimensional models since the 
inflated observation covariance is represented by a relatively small set of its 
largest eigenpairs obtained by means of the Lanczos algorithm. For mildly 
nonlinear problem this covariance has to be computed only once

- so far, the method is primarily suited to the case when the quantities of 
interest coincide with the active controls or largely dominated by them. As it 
stands, the method is not useful for forecasting
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Future work
-  The suggested control set design method can be generalized to the case when 
the full input simultaneously contains active, passive and idle (nuisance) controls

- The method can be generalized to include integrated controls, i.e. control inputs 
which are not originally presented in the model. This allows us to assess the 
performance of existing DA methods, such as optimal nudging or sub-window
technique   

- A few developments to analyse global rather than local design functions can be 
suggested 

- Important: the presented methodology can be used as a basis for a general 
control space decomposition approach (work in progress), which might 
eventually lead to a better forecasting algorithm
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