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Advanced uncertainty analysis and optimal design in
variational estimation (data assimilation)

Uncertainty analysis:
- Intrinsic feature of most time-sequential estimation methods

(filtering, ensemble and particle methods), however a difficult
ISsue In variational estimation!

Optimal design:

- design of optimal observation arrays or trajectories (in
geophysical data assimilation)

- design of test signals (in parameter and structural estimation
problems)

- optimal shape design (in aero/hydrodynamics).

A pivotal object in these applications — Hessian
Major difficulty — high dimensions, CPU time



Advanced uncertainty analysis and optimal design in
variational estimation (data assimilation)

1. Hessian — second derivative of the DA cost-function or design
function

2. Truncated Hessian — linearised Hessian, obtained by ignoring
second-order terms

3. The later is also known as Controlability Gramian, Fisher
Information Matrix

4. Hessians are key mathematical objects in optimal and
feedback controls, estimation, information and optimal experiment
design theories



General formalism - 1

U €U - full set of model inputs, ¢ - input space
X € A - state variables | X' - state space
X = M(U) - model or input-to-state mapping M : U — X

U - ’true’/exact input , X = M(U) - true’ model prediction

Instead:
U* = U + ¢ , where U* - background /prior | € - background error

Y € YV - observables , ) - observation space, C' - observation operator
Y=C(X)=C(M(U)):=GU)
- 'input-to-observations’ mapping G : U — Y

Y = G(U) - 'true’ /exact observations
Instead:

Y*=Y +£6=G(U) + £, € - observation error

U=U |Y* - estimate of U, posterior




General formalism - 2

Variational DA cost-function:
1 , . 1
J(U) = SIRTAGW) = Y5 + 51 BAU ~ Ul — inf

R=F [{{T] - observation error covariance

B = E[ee!] - background error covariance

J(U)=GHU)RYGU)-Y*)+ B YU -U*) - gradient of J(U)
Ji ( j ) = 0 - optimality condition
J'"U) - v:=HU)- -v= - Hessian (second derivative of J(U))

(GuU)*BGy(U) + B~ - v+ [(G'(U))*]y - v RTHG(U) — Y{)
H(U) - (Gy(U))*R'GL(U)+ B™) - v - truncated Hessian
(

G'(-) and G"(-) are the TL and adjoint operators

v

oU = ff — U - estimation error
E[0U] = 0 - estimation error bias

Py, = E[0USUT| ~ H-'(U) ~ H='(U) - estimation error covariance
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Analysis error covariance

S1AM J. Sc1. CoMmPUT. (@ 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 18471874

ON ANALYSIS ERROR COVARIANCES IN VARIATIONAL DATA
ASSIMILATION*

I. YU. GEJADZE', F.-X. LE DIMET?, AND V. SHUTYAEV?

Abstract. The problem of variational data assimilation for a nonlinear evolution model is for-
mulated as an optimal control problem to find the imitial condition function (analysis). The equation
for the analysis error 15 derived through the errors of the input data (background and observation
errors). This equation 1s used to show that in a nonlinear case the analysis error covariance operator
can be approximated by the inverse Hessian of an auxiliary data assimilation problem which in-
volves the tangent linear model constraints. The inverse Hessian 1s constructed by the quasi-Newton
BFGS algorithm when solving the auxiliary data assimilation problem. A fully nonlinear ensemble
procedure 15 developed to verify the accuracy of the proposed algorithm. Numerical examples are
presented.

Key words. data assimmlation, optimal control, analysis error, Hessian, covariance operator
AMS subject classifications. 65K10, 35B37

DOI. 10.1137/07068744X




Analysis error covariance

Well known fact:

- analysis error covariance can be approximated by the inverse of the
truncated Hessian (Hessian of auxiliary control problem)

Novel results of the paper:

- clean formulations, both in terms of operators and evolutionary
equations (continuous time-space)

- computation of the inverse Hessian using the LBFGS

- a unique set of numerical examples, showing dependence of analysis
error variance and correlations on transport mechanisms and
parameters of the background covariance
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: 0
Optimality system:dg‘ad\eﬂ‘ { 3 = Fle+71 te(0,T)

Ol = u,
o Tl
\)(\G“O(\ 8"
cost {—%;——(F*(w))*w = CR(Cp—pms), te(OT)
f‘O*lt:T — 0
Gauss-Newton versus Newton
e W _pgyw = 0,te(0,T),
\,\%g,\a“’ o = v,
o} .
1(0(\03“3 {—%—(F’(@))*w* — _C*R'CY, te(0,T)
Q‘Od\)c ‘ I"I()*|t=T — 01
H(u)v = B 'v — ¥*|,_.
quet {%‘%—F’(w)w — 0,te(0,T),
Q‘O ¢|t=D = v,
yec® oy
R O _ (Pt = (F(e)$)* —C*RICy, te (0,T)
H w*|t=T — U'.v
H(uw)v = B~ v — ¢*|,_.
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Example of the inverse Hessian obtained by LBFGS

Fiz. 1. Covariance: linear diffusion problem.
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Analysis error covariance: parameter and boundary value
estimation problems

Journal of Computational Physics 229 (2010) 2159-2178

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

On optimal solution error covariances in variational data
assimilation problems

I.Yu. Gejadze?, F.-X. Le Dimet P, V. Shutyaev ©*

* Department of Civil Engineering University of Strathdyde, 107 Rotenmow, Glasgow &4 ONG UK
B MOPSE Profect (CNRS, INRIA, UJF, INPG); LJK, Universicé Joseph Fourier, BF 51, 38051 Grenoble Cedex 9, France
“institute of Numenool Mathematics, Russian Academy of Sciences, 119333 Gubking 8, Moscow, Russia

ARTICLE INFO ABSTRACT
-"lr!'l'ft' fistary: The problem of varational data assimilation for a nonlinear evolution model is formulated
Received 14 July 2009 asan optimal control problem to find unknown parameters such as distributed model coef-

Received in revised form 16 November 2009
Accepted 18 November 2009
Available online 24 November 2009

ficients or boundary conditions. The equation for the optimal solution error is denved
through the emrors of the input data (background and observation errors), and the optimal
solution emor covariance operator through the input data emror covariance operators,
respectively. The guasi-Newton BFCS algorithm is adapted to construct the covariance

o N matrix of the optimal solution error using the inverse Hessian of an auxiliary data assim-
Variational data assimilation o . \ e .
Parameter estimation ilation problem based on the tangent linear model constraints. Preconditioning is applied
Optimal solution error covariances to reduce the number of iterations required by the BFGS algorithm to build a quasi-Newton
Hessian preconditioning approximation of the inverse Hessian. Mumerical examples are presented for the one-
dimensional convection-diffusion model.

Keywords:

© 2009 Published by Elsevier Inc.



Analysis error variance and correlation matrices for

parameter and boundary value estimation problems

Parameter estimation problem

92 — Fle.N+f te(.T)
wjlrtiﬂ i J
) = jof J@).

| . | .
JA) = |R2(Cle) = Y5+ 5 I1B~ 2= A%,
2 2

Truncated Hessian-vector product:

%_F:,; @, A = Fi(g, v, t € (0,T),
i.i’|t=n = 0,
_O (@) = —(C@)RIC@), te 0,T)
V" —r = 0,
H( v = B~'v ~|(F(2. %)
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lllustration: variances and correlation matrices
Diffusion coefficient estimation problem
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Main results:

1. Inthe linear case, the estimation/analysis error covariance is
equal to the inverse Hessian

2. In the non-linear case, the estimation error covariance can be
approximated by the inverse Hessian computed at the “truth”

3. The approximation error consists of:

a) linearisation error

b) origin error (due to difference between the optimal solution and
the truth). Optimal solution may not always be achieved during
minimization procedure

How to reduce this error?
substitute 'local' estimation of the covariance by 'global' estimation
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Effective inverse Hessian

Journal of Computational Physics 230 (2011) 7923-7943

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

L |"

ELSEVIER journal homepage: www.elsevier.com/locate/jcp

Computation of the analysis error covariance in variational data
assimilation problems with nonlinear dynamics

L.Yu. Gejadze **, G.J.M. Copeland ®, F.-X. Le Dimet", V. Shutyaev©

D¢ partment of Civil Engineering, University of Strathclyde, 107 Rottenrow, Glasgow, G4 ONG, UK
" MOISE project (CNRS, INRIA, LJF, INPG); LIK, Université Joseph Fourier, BE 51, 38051 Grenoble Cedex 9, France
“Institute of Numerical Mathematics, Russian Academy of Sdences, Gubkina 8, Moscow 1159333, Russia

ARTICLE INFO ABSTRACT

Artide Fistory: The problem of variational data assimilation for a nonlinear evolution model is formulated
Received 26 April 2010 as an optimal control problem to find the initial condition function. The data contain errors
Received in revised form 18 March 2011 (observation and background errors), hence there will be errors in the optimal solution. For
iﬁgﬁ lﬂd‘i?g E'!Tn]:h 3011 mildly no nlinear dyna_rnic g, the i:mfariance matrix of thi_e optimal solution error can often be

approximated by the inverse Hessian of the cost functional. Here we focus on highly non-
linear dynamics, in which case this approximation may not be valid. The equation relating
the optimal solution error and the errors of the input data is used to construct an approx-
imation of the optimal solution error covardance. Two new methods for computing this

Keywards:
Large-scale flow models
Nonlinear dynamics

Data assimilation covariance are presented: the fully nonlinear ensemble method with sampling emror com-
Optimal control pensation and the ‘effective inverse Hessian' method. The second method relies on the effi-
Analysis error covariance cient computation of the inverse Hessian by the quasi-Mewton BFGS method with
Inverse Hessian preconditioning, Mumerical examples are presented for the model governed by Burgers

Ensemble methods equation with a nonlinear viscous term.
Monte Carlo @ 2011 Elsevier Inc. All rights reserved.




Effective Inverse Hesslan - 1

1. New estimate is suggested
P =E[H (U +6U)], 6U ~ p,(U) (not P = (E[H(U + 6U)])~*
where
pa(U) = const - exp (—%HR_U?(G’(U) — G(E—T))Hi — %HB_UQ(U — {_)||E{,)
2. A motivation is provided (no rigorous proof is available)

3.1 Implementation: 'pseudo-random’ (requires ensemble of opt. solutions)
L
1 o
P=7 ;_I:H (T)

where U} are elements from the ensemble of estimates {U;}, 1 =1,. ... L

3.2 Implementation: 'quasi-random’ (does not require ensemble of optimal

solutions) I

= 1Y H MO +Uf),
1=1

P = H-YU), k=0.1,..

Pk+1

SUF = (Pk)lfg-}}g. m ~ N(0,1)
18



Effective iInverse Hesslan - 2

Efficient implementation using double preconditioning:

1 < :
_ EZH_I(L-})
l

R

L
P = BI2-1/2(0) (%Zﬁ‘( ram) ~U2(0)(BY2)"
=1

H(-) = (B'*)"H(-)B'? = (B'*)"(Gy; ()R~ 'Gy()BY? + 1

H(T + 6Uy) = H=V2(O)H (U + sU) H=V/2(07)

All projected Hessians are presented in the limited-memory form via
eigenpairs!

K
AB v =T -v+ Z( }\f — DYWR(WR)* - v,
k=1
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E

Relative error in variance and error in correlation matrix, by the

Effective Inverse Hesslan - 3

iInverse Hessian and the effective inverse Hessian
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Bayesian posterior covariance

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1826—1841, October 2013 A

® Rets

Royal Meteorological Society

Analysis error covariance versus posterior covariance in
variational data assimilation

I. Yu. Gejadze,* V. Shutyaev® and F.-X. Le Dimet®

ADepartment of Civil Engineering, University of Strathclyde, Glasgow, UK
P Institute of Numerical Mathematics, Russian Academy of Sciences, MIPT, Moscow, Russia
“*MOISE project, LJK, University of Grenoble, France

*Correspondence to: I. Yu. Gejadze, Department of Civil Engineering, University of Strathclyde, 107 Rottenrow, Glasgow
G4 ONG, UK. E-mail: igor.gejadze@strath.ac.uk
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Bayesian posterior covariance - 1

Bayesian posterior covariance and analysis error covariance are
different objects (due to different centring of data)

Analysis error covariance: P = E,[(U — U)(U — U)'] = E,[sUsU"]

Bayesian posterior covariance: P = E, [(U — E,[U))(U — E,[U])!]

Analysis error pdf:
T — oLy p-1r2 B o Lo 1m0 2
pa(U) = const - exp —||R (G(U) G( ))||J, §||B (U —=U)||z

Bayesian estimate pdf:
pp(U) = const - exp (__||R—1e’2((,({ ) = Y3 - —||B 12U - U D)||M>

22



Bayesian posterior covariance - 2

Bayesian posterior covariance via Hessians: double product formula

a) local (can be found in the literature on statistics)

P =H 1 (Uy)H (U)K (D)

b) global (new)
P = E[H-Y(U)HO)H YD), ;6U ~ pa(U)

Efficient implementation using double preconditioning:

P =DBY2H~ le’?(f ) A(U

) H=2(U0)(BY?)",
Aly) = LZH V2GR (O ()

The first-level preconditioning
H()= (B H()B'?, H()=(B?)'H()B'
the second-level preconditioning

ﬁ(,) — HY2(0y) H(-) H-V2(0y). ?L:i(-) — HV2() H() B2

23



Bayesian posterior covariance - 3

Numerical illustration in terms of the relative error:
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Red — approximation by the 'effective’ inverse Hessian:
L
_ 1 —1/77
P=- ;§:1:H (7)

Green — approximation by the 'effective' double-product formula

L
1 ~ E £
P =1 > H(O)H K (O)

I=1



Bayesian posterior covariance - 4

Main results:

1. Bayesian posterior covariance and analysis error covariance
are different objects (due to different centring of data)

2. They coincide in the linear case

3. Analysis error covariance relies on the truncated Hessian and,
therefore, no 'second-order' information is involved

4. Posterior covariance involves both truncated and full Hessians
(second derivative)

5. In practice, the double-product formula is unstable in local
version and is only useful in 'effective’ implementation

6. 'Effective’ estimates can be built using a relatively small sample
(L<100)

Since we obtain a sample of Hessians (either truncated or full),
one may access higher moments of the posterior distribution !

25



Gauss-verifiability

Journal of Compurational Physics 280 (2015) 439-456

Contents lists available at ScienceDirect

Journal of Computational Physics

ELSEVIER www.elsevier.com/locate/jcp

On gauss-verifiability of optimal solutions in variational data
assimilation problems with nonlinear dynamics

@ Crosshark

LYu. Gejadze **, V. Shutyaev

4 UMR G-EALL IRSTEA-Moncpellier, 361 Rue | F. Breron, BP 5095, 34196 Moncpellier, France
¥ Insticure of Numericol Mochemarics, Russian Acodemy of Sciences, Moscow Instirure for Physics and Technology, 119333 Gubking 8
Moscow, Russio

ARTICLE INFO ABSTRACT
Arride hiseory: The problem of variational data assimilation for a nonlinear evolution model is formulated
Received 12 June 2014 as an optimal control problem to find the initial condition. The optimal solution (analysis)

Received in revised form 24 Seprember
2014
Accepred 26 Seprember 2014

error arises due to the errors in the input data [background and observation errors).
Under the gaussian assumption the confidence region for the optimal solution error can

Available online 2 Ocrober 2014 be cqnstmcted usjng the ana];,.rsis error cmarlancg. Due to nunl.inearjr_',,r of the m{:u;lel

equations the analysis pdf deviates from the gaussian. To a certain extent the gaussian
Keywords: confidence region built on a basis of a non-gaussian analysis pdf remains useful. In this
Large-scale geophysical flow model case we say that the optimal solution is “gauss-verifiable”. When the deviation from
Monlinear dynamics the gaussian further extends, the optimal solutions may still be partially (locally) gauss-
Dara assimilarion verifiable. The aim of this paper is to develop a diagnostics to check gauss-verifiability
Oprimal conrrol of the optimal solurion. We introduce a relevant measure and propose a method for
Identifiability

) computing decomposition of this measure into the sum of components associated to
Confidence region . . .
Analysi err povarianns the corresponding elements of the control vector. This approach has the potential for
Nof-gaussianity implementation in realistic high-dimensional cases. Mumerical experiments for the 1D
Burgers equation illustrate and justify the presented theory
i@ 2014 Elsevier Inc. All rights reserved.



Gauss-verifiability - 1

To check gaussianity of the estimator one can use classical
tests for multivariate normality (Jarque-Berra, etc.):

1. Local (computed at a reference solution)
2. One integral value characterising normality of the optimal solution vector
3. Requires inversion of the sample covariance (deficient rank matrix)

New multivari normali i

1. Global (computed in the vicinity of a reference solution)
2. Distributed value (defined for each element of the control vector)
3. Requires inversion of the Hessian (full rank matrix )

27



Gauss-verifiability - 2

xistence principle:
- estimate belongs to a certain confidence level of the 'true’ distribution;

- 'truth’ belongs to the corresponding confidence level built for the
correct posterior distribution

Coexistence breach:
- 'truth’ falls outside the confidence region built for the Gaussian
posterior distribution, which approximates the correct one

Gaussian CR around U

28



Gauss-verifiability - 3
Coexistence measure (to quantify coexistence breach):

E[0(v,0)] = / 8(v, U pa(U + v, U)dv

0(0,7) = 2IP-V3(T +v)olfy — IO +v.0,G(0)

where

* * 1 — * i ]- _ "
JUUY") = S|BVAGU) = Y3 + 5B - U

T ]- — T VT ]- — T
pa(U) = const - exp (—§||R 12(GU) - G@))3 - 5118 12U — L.-)||g,)
P - covariance of p,(U)

: ima isi ]
D = %tr{E[P‘l({?" +0)P(U)]} = Cy. where ¢y = E[J(U +0,U,G(U))]

Deconvolv xistence m re:

- 1 C N
D = Z d-i-.- where di = 5(14(:33'_. E.-{.;)M — n,l : A= E[QTP—I({ + 3_.1)(2]

i=1 29



Gauss-verifiability - 4

Deconvolved coexistence measure:

D = Z d-i'.« dg = %(AE"E E-i)H — Cnl

. A=EQTP U +0)Q)]
d; - contribution to coexistence measure by i-th element
square-root decomposition P([:T) —QQT, Q:U—-U

Assume:  P~NU +v) ~ H(U +v)
Q=H"'*U)

Finally: A= E[H(U + )]

30



Gauss-verifiability - 5
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Gauss-verifiability — 5: Main results

1. New multivariate normality test is suggested: global, distributed
value (i.e. for each element of the optimal solution vector)

2. This test allows to reveal the areas where the deviation from
gaussianity is most noticeable. Knowing these areas is important
(different options, e.g. local application of particle method of MCMC )

3. If the analysis error covariance is estimated via the 'effective'
iInverse Hessian, the distributed coexistence measure comes as by-
product for free
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Sensor-location design problem

SIAM J. SCI. COMPUT. @ 2012 Society for Industrial and Applied Mathematics
Vol 34, No. 2, pp. B127-B147

ON COMPUTATION OF THE DESIGN FUNCTION GRADIENT FOR
THE SENSOR-LOCATION PROBLEM IN VARIATIONAL DATA
ASSIMILATION™

I. YU. GEJADZEt AND V. SHUTYAEV?

Abstract. The optimal sensor-location problem is considered in the framework of variational
data assimilation for a large-scale dynamical model governed by partial differential equations. This
problem is formulated as an optimization problem for the design function defined on the limited-
memory approximation of the inverse Hessian of the data assimilation cost function. The expression
for the gradient of the design function with respect to the sensor-location coordinates is derived via
the adjoint to the Hessian derivative. An efficient algorithm for the gradient evaluation suitable for
large-scale applications is suggested. This algorithm exploits the special structure of the limited-
memory inverse Hessian defined by a small number of Ritz pairs obtained by the Lanczos method.
If additional memory is allocated and certain data are stored during the computation of the Ritz
pairs, no additional runs of the tangent linear model are required to evaluate the gradient. The
accuracy of the gradients is checked in the numerical experiments. These gradients can be used
for the gradient-based optimization of the design function within the chosen global optimization
procedure.,

Key words. optimal experiment design, sensor-location problem, design function gradient,
large-scale flow models, variational data assimilation, limited-memory inverse Hessian, Lanczos
method

AMS subject classifications. 65K10, 35B37

DOI. 10.1137/110825121

33



Problem statement

Assume having L sensors located at co-ordinates T = (zq,...,z.)", z;(t) €
Then, the observation operator C' is defined as follows:

Y =CX = ((d(x,21). X) g oo, (62, 21). X) )T
Data assimilation cost-function:
J(U) = S B CMW) = Y + 3B = U, - inf
Truncated Hessian associated with cost-function:
H(:) = My()* C*R7'C My () + B

Truncated Hessian equivalent to Fisher Information Matrix (FIM)!
Most (alphabetical) design criteria are based on FIM.

m
r) = ZF‘:’ (H_l('s;f)fi"i_- Ei)Rm , pi = const 20

If pp = 1. i = 1.....m, then U is the trace of H~!

inf; W(-, 7) is the classical A-optimality design criterion

34



Design function gradient

WL(-,x) - gradient Wz(-, x) with respect to x

Due to the absence of inexpensive methods for computing the gradient
of the design function, its minimization is generally performed using
gradient-free methods !

Theorem. The gradient of the design function (-, x) with respect to x
can be expressed via the gradients in the eigenvalues and eigenvectors of the

projected Hessian by the formula
Z v
where VUl (-, %) ~ SM(BUEU )TP(BU?Uk) +2(sp — 1)(BY?Up)" PBY?UV],

with s/, and V], satisfying Qme eXpI‘eSSIOI’lS)

All elements required for computing these expressions are accumulated
during construction of the Hessian itself (via eigenpairs by Lanczos) !

A new mathematical object: adjoint to the Hessian derivative - (H'v)*w

35



Main results

The gradient of the design function can be computed at a negligible
cost (in terms of CPU time) in the process of computing the design
function itself

This is an important step toward the gradient-based optimization in
optimal sensor location problem

Approach that can be used in other design problems, such as the
optimal test-signal design for parameter identification, or optimal
shape design
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Control set design problem

Journal of Compurartional Physics 325 (2016) 358-379

Contents lists available at ScienceDirect

Journal of Computational Physics

2 i
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ELSEVIER www.elsevier.com/locate/jcp

Design of the control set in the framework of variational data @mmm
assimilation

I.Yu. Gejadze *, P.-O. Malaterre

LR G-EAU, IRSTEA-Monepelier, 361 Fue ] F. Breron, BP 5005, 24106 Montpellier, Fronce

ARTICLE INFO ABSTRACT

Aricie hiscory; Solving data assimilation problems under uncertainty in basic model parameters and in
Received 25 May 2016 source terms may require a careful design of the control set. The task is to avoid such
Received in revised f_“"“ 17 August 2016 combinations of the control variables which may either lead to ill-posedness of the contral
ﬁiﬁgﬁg Eiliﬁ;[;?g!uﬁﬂ 016 problem formulation or compromise the robustness of the solution procedure. We suggest

a method for quantifving the performance of a control set which is formed as a subset of

Keywards: the full set of uncertainty-bearing model inputs. Based on this guantity one can decide if
Control set design the chosen 'safe’ control set is sufficient in terms of the prediction accuracy. Technically,
Uncertainty quantification the method presents a certain generalization of the ‘variational' uncertainty quantification
Variarional dara assimilation method for observed systems. It is implemented as a matrix-free method, thus allowing
1D hydraulic nerwork model high-dimensional applications. Moreover, if the Automartic Differentiation is utilized for

Auromaric differentiation computing the tangent linear and adjoint mappings, then it could be applied w any

multi-input ‘black-box" system. As application example we consider the full Saint-Venant
hydraulic nerwork model SIC2, which describes the flow dynamics in river and canal
networks. The developed methodology seem useful in the context of the future SWOT
satellite mission, which will provide observations of river systems the properties of which
are known with quite a limited precision.

@ 2016 Elsevier Inc. All rights reserved.
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Motivation

River flow model and discharge estimation problem - 1

Sia off-take 0, l:f:'

K1 reach 3

ﬁ\ downstream

Ssxs boundary node

upstream
boundary nodes internal node

singular section:
Sy, cross-device

St-Venant equations:

a) Continuity b) Momentum

0A OQ () E)QQ/A 07 .
A— = —gAS¢ + kqV

ot or 1 R TR TR A

() - discharge

A(Z, pgeo) - Wet cross-section area, py., - geometry parameters
Z - water surface elevation

V = (/A - mean velocity

S¢(Cs) - friction function dependent on Strickler coefficient

q - lateral discharge
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Motivation:
River flow model and discharge estimation problem - 2

Internal node equation: . off-take or tributary
Q|S1 k1 T Q|Sg k2 Q|53 1 — Ql

Z|51k1 _2‘531 Z|52L2 _Z|531
H|51L1_H531 H|SEEE_H531? VZ/.‘S""‘Z

or

Cross-device (singular section) equation:
Q|Sz,z' - Q|53,'é+1 =0
or
Q|S.'3Ti = }-(Z|S.'3;£? Z|53,1'+1*- Ca )

Boundary conditions:
a) Upstream boundary nodes: inflow discharge Q(?), elevation Z(t)
b) Downstream boundary node: rating curve Q(Z, p,.), elevation Z(t)
where p,. - rating curve parameters

Initial conditions: Qq. 7y - steady-state flow solution

Full input vector:

| | ] I |
U = {| Q. ), q. {QD,ZD}_-.I ICS: k, Cq. pre, Pgeos ”}"Jnum |} cu

X X
Flow controls, i.e. controls Physical parameters T
associated to state variables: {Q), 7} Parameters of numerical scheme 39



Motivation:

discharge estimation problem - what to control and how?

| _ | ) I |
E"T — {I Q Qi: q. {(—QD-ZD}.I IC'T,-;. ;1'. ("'d. Pre- IJQEO‘ ,|pﬂti-m. }'EH

Flow controls, i.e. controls Physical parameters
associated to state variables: {Q), 7} Parameters of numerical scheme

SIC model does not support supercritical flow (as majority of models using the
Preissmann scheme ), and drying/wetting processes. As long as these flow states are
encountered, the code execution stops with an appropriate error message.

These states does not normally occur when the model runs to describe physically
meaningful conditions. However, during solving estimation problems, the current
estimates may not be supported by the model ! (comment)

As a result, the estimation process breaks down.

Some parameters enter the model in a highly non-linear way, for example geometric
parameters. Introducing these parameters into the control vector leads to ill-posedness
(non-uniqueness (equifinality) / multiple local minima), which requires the global
minimum search !

Careful design of the control set is necessary !
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Question: - what to control and how?

It is impossible to control the full input U !

1. Technical /implementation issues:
a) dimension of the control vector
b) convergence rate
2. Fundamental:
a) identifiability / equifinality;
b) convexity;

¢) connectivity of the solution domain

Aim: design of a suflicient control set

tradeoff: accuracy versus robustness and solvability
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Control set design: design function
Notations:

U € D - design function or Quantity of Interest (Qol) , D is a 'design’ space
U = D(X) - 'state-to-design” mapping D : X — D

00 = D(M(U)) — D(M(U)) - posterior design function error

U = DA (X)M/;(U)SU - design function error linearized

Psy = E[6060T] = D'y (X)My(U) Psy (M (U))* (D (X))*
- design function error covariance for small 6U
Psi;r = B - without DA
Psy ~ H-Y(U) ~ HY(U) - after DA

Design function error covariance can be represented by a limited number of
its eigenvalues / eigenvectors, given the product

The above presented material is more or less well established results known
as “variational uncertainty quantification”.
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Control set design: partial control -1

U, € A - active subset of the full control vector U
U, =U \ U, - passive subset of U

Uz, U; - background /prior

U,, U, - 'truth’/exact components of U

_ * _ * - N, z R ot o
Ea=U; —U,, €, = Up — U, - background error in components of U

If Ele, "T] = 0, then B is block-diagonal with blocks B, and B,,
where B, = Ele e, | and B, = Ele,e, |

® = ; ]- — *® ¢ -
J(U, )——|| G Tp) = Y5 + 5| B AU = U3 — in

- cost-function for U,

0Uq ~ H, (U) (G, (U)R™€ + By 'ea — GF, (U)R™'Gy, (U)e,)
- estlmation error via &,, €, and §
H,(U) =Gy (U)R'Gy (U) + B

- Hessian of an auxiliary control problem for U,

43




Control set design: partial control -2

Psy = E[0U6UT] = D\ (X )M@(ﬁ@@/\/{i;(ﬁ ))*(Dx(X))*

oU = (0U,,¢,)" - posterior error in the input vector

( Pg[\— E[0U - 6UT]| - error covariance:
_

(P E[0U,-0U,] ElUa - &,] Fsv.  Fova,
‘\Eﬂ/ — . o T
Ele,-0UT]  Elg,-<T] P, By

Elements of the covariance are expressed via blocks of the Hessian !

Psu, = E[(SUQ&‘UE] — H, 7'+ Ha_lﬂﬁpoHmHﬁ_l
Pstr

ap

= E[0U.%] = -H,'H,,B,

Pﬁ[:’p o E[’T OUT] —B Ha'mﬂu_l
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Control set design: NA results, case A

G [EIG.Q]

U=(Q1(t), zp(k),b(k), Cs(k), U™, k=1,...,K;

ccl - full control case: ie. U, =U \ U.

Ug = Q1(1);

Ua = (Q1(0), zp(k))T;
Ug = (Q1(1), Cs (k)T

cc2 - partial control case:
cc3 - partial control case:

cc4 - partial control case:
Standard deviation for uncertainties:

o[0Q1] = 25m? /s
o[0zp] = 0.33m, o[0Cy]

3.3, o|ob]

| ' | : |
12

—— background

o [8G,]

col: Uy = I,

] ]
4i) 60 &0
section number

20

0.07

e

0.5

0.4

0.1

| hackgrournd
9 # N

cedd U, =0,

\_ _/I

zp(x)) H

-~

\

| |
40} G0
section number



Outline

1. Education and background

2. General introduction

3. Analysis error/posterior covariance
4. Design problems

5. Parts not included
6. Current and future work
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Implicit (idle) control

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 000—000, April 2017 B DOI:10.1002/qj.3102

Royal Meteorological Society

Implicit treatment of model error using inflated observation-error
covariance

I. Gejadze,** H. Oubanas? and V. Shutyaev®

3JRSTEA, Montpellier, France
b Institute of Numerical Mathematics, Russian Academy of Sciences, MIPT, Moscow, Russia

*Correspondence to: I. Gejadze, 361 Rue ].F. Breton, BP 5095, 34196 Montpellier; France.
E-mail: igor.gejadze@irstea.fr
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Inverse Hessian by multigrid approach

51aM 1. 501 COMPUT. (€] XXXX Society for Industrial and Applied Mathematics
Vol. 0, No. [, pp. (0000

A MULTILEVEL APPROACH FOR COMPUTING THE
LIMITED-MEMORY HESSIAN AND ITS INVERSE IN
VARIATIONAL DATA ASSIMILATION®

KIRSTY L. BROWNT, IGOR GEJADZE#, AND ALISON RAMAGE?

Abstract. Use of data assimilation technigques is becoming increasingly common Across many
application areas. The inverse Hessian (and its square root) plays an important role in several
different aspects of these processes. In geophysical and engineering applications, the Hessian-vector
product is typically defined by sequential solution of a tangent linear and adjoint problem; for the
inverse Hessian, however, no such definition is possible. Frequently, the requirement to work in a
matrix-free environment means that compact representation schemes are emploved. In this paper,
we propose an enhanced approach based on a new algorithm for constructing a multilevel eigenvalue
decomposition of a given operator, which results in a much more efficient compact representation
of the inverse Hessian (and its square root). After introducing these multilevel appraximations, we
investigate their accuracy and demonstrate their efficiency (in terms of reducing memory requirements

and for computational time) using the example of preconditioning a Gauss-Newton minimization
procedure.

Key words. data assimilation, inverse Hessian, limited memory, preconditioning, multigrid
AMS subject classifications. G5K05, 65K10, 15409, 15429

DOI. 10.1137/15M1041407
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New mathematical concepts introduced ...

1. Multilevel eigenvalue decomposition

2. 'Effective' approximations for analysis error/ posterior
covariances

3. New multivariate normality test: coexistence measure
4. Adjoint to Hessian derivative

5. Control set design
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Variational DA in river hydraulics

Application: Surface Water and Ocean Topography (SWOT)
mission

o 11 i
'...||||||I|1III|T|I:I I.P”ﬂ |(\| M‘ it
i

il
et

One of tasks of the mission is to monitor river discharge in ungauged :

basins, ;:g;ir level, streamflow, storage

Main difficulties:

- low accuracy of observations, low temporal frequency

- insufficient data on the river bed geometry and roughness, -~
properties of the catchment area of interest and lateral
inflows / off-takes

{
river outlines, width




Variational DA In river hydraulics

Model: SIC”2 (Simulation and Integration of Control for Canals) -
hydraulic network model, developed by IRSTEA (former CEMAGREF),
since 1990.

Based on Saint-Venant equation (for a single reach), includes:

- coupling between reaches

- complex description of river bed

- storage areas, most of known hydraulic devices

Main contributions:

1. development of the adjoint and TL counterparts for SIC*2 (using
Automatic Differentiation). Presently, it is the only known stable adjoint
_for models of this type (Mascaret, Mikell, ISIS, etc.)!

2. approach for solving discharge estimation problem under strong
uncertainty in major model parameters: simultaneous estimation of
discharge, bed elevation and bed roughness coefficient, iterative
regularization

3. PhD by Hind Oubanas
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Variational DA in river hydraulics
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Variational DA in river hydraulics

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer Meth. Fluids 2017; 83:405-430 |
Published online 28 July 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/Ad.4273 NUMERICAL METHODS ”

FLUIDS

Discharge estimation under uncertainty using variational

‘Waligang A Wall

methods with application to the full Saint-Venant
hydraulic network model

Igor Gejadze and Pierre-Olivier Malaterre

UMR G-EAU IRSTEA-Montpellier, 361 Rue LF. Breton, BP 5095, 34196 Montpellier, France

SUMMARY

Estimating river discharge from in sifu and/or remote sensing data is a key issue for evaluation of water
balance at local and global scales and for water management. Variational data assimilation (DA) is a pow-
erful approach used in operational weather and ocean forecasting, which can also be used in this context.
A distinctive feature of the river discharge estimation problem is the likely presence of significant uncer-
tainty in principal parameters of a hydraulic model, such as bathymetry and friction, which have to be
included into the control vector alongside the discharge. However, the conventional variational DA method
being used for solving such extended problems often fails. This happens because the control vector iterates
ii.e., approximations arising in the course of minimization) result into hydraulic states not supported by the
model. In this paper, we suggest a novel version of the variational DA method specially designed for solving
estimation-under-uncertainty problems, which is based on the ideas of iterative regularization.

The method is implemented with s1C2, which is a full Saint-Venant based 1D-network model. The si1c?
software is widely vsed by research, consultant and industrial communities for modeling river, irrigation
canal, and drainage network behavior. The adjoint model required for variational DA is obtained by means
of automatic differentiation. This is likely to be the first stable consistent adjoint of the 1D-network model
of a commercial status in existence.

The DA problems considered in this paper are offtake/tributary estimation under uncertainty in the cross-
device parameters and inflow discharge estimation under uncertainty in the bathymetry defining parameters
and the friction coefficient. Numerical tests have been designed to understand identifiability of discharge
given uncertainty in bathymetry and friction. The developed methodology, and software seems useful in the
context of the future Surface Water and Ocean Topography satellite mission. Copyright © 2016 John Wiley
& Sons, Ltd.

Received 29 October 2015; Revised 22 February 2016; Accepted 21 June 2016



Variational DA in river hydraulics
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Variational DA in hydrology (GR4J)

GRA4J is a daily lumped four-parameter rainfall - runoff model, global (catchment)
Inputs: P — the rainfall depth, E — potential evapotranspiration (PE)

Output: Q - runoff

Parameters:

X, - maximum capacity of the production store;
X, - coefficient in groundwater exchange term;
X, - the routing store reference capacity ;

X, - time-base of unit hydrographs

State variables:
S - water content in the production store;
R - water content in the routing store

Initial state:
S(t=0),R(t=0),P (t=0,t=—dt,t=—2dt,...)

Types of estimation problems:
- parameter calibration;
- Initialization
- boundary control: P(t),E(t)

&
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|| interception
!

En n

0.9 0 1
UHI UH2 [
<> < >
Xy z..f;
| |
9 01
R Fixz) —T Fix1)
-
Or Od

J

@

on
i S




Variational DA in hydrology (GR4J)

Parameter calibration problem:
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COST_INI = 18103.0
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Variational DA in hydrology (AIGA)

AIGA is an hourly lumped three-parameter rainfall - runoff model, distributed over
catchment, represented by pixels
Inputs:
P — the rainfall depth given by discretized precipitation map
E — potential evapotranspiration (PE)
Output: Q — runoff n
Routing scheme —  Qj,, = Z qi(t — lag) avec lag = Lipy /Vipy
i=1

Resolution - 1 km”2,
parameters: capacities of transfer and production reservoirs, transport speed

_Ell_
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Variational DA in hydrology (AIGA)

lllustration:

Background and initial True control vector x, Optimal control vectorx,
control vector x

&Bo

Subject of the PHD thesis started at the end of 2017

Thesis title:
Data assimilation applied to a distributed hydrological model: regional
calibration and assimilation of flows observed in the AIGA method

PhD student. Maxime Jay-Allemand

The thesis will be co-supervised by Patrick Arnaud (Irstea, UR RECOVER, Aix-

en-Provence)
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Future plans

Another PhD funding anticipated

Thesis title:
Assimilation de données pour améeliorer les modeles de qualité de I'eau : vers un
indicateur de pression azote

2018-2021 in collaboration with Irstea Antony

Global sensitivity and functional uncertainty analysis using numerical derivatives
(LEFE-MANU project, in collaboration with Victor Shutyaev)
Important results obtained, to be presented in Clermont-Ferrand

General direction of the group G_EAU:
development of integrated hydraulic-hydrology
model capable of assimilating different types of
data, including satellite-born, radar, in-situ
(gauge if any), etc.
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Question: - what to control and how?

Explicit control:
inclusion certain input variables into the active control set.

Implicit (idle) control:

a way of taking into account uncertainty in certain input variables without
considering them as active controls: idea related to the 'nuisance parameter
concept, common in classical and Bayesian statistics.

Nuisance parameters — inputs which affect the design function (Qol) indirectly,
l.e. via estimates of other inputs, otherwise are out of interest.

Examples:

- discharge estimation under uncertainty in bathymetry and bed roughness;

- heat flux at the ocean surface in the presence of model error.
Counterexample:

- forecasting.

Implicit treatment of uncertainty in nuisance parameters is generally achieved
by modifying the likelihood function. In Gaussian case this can be done by
Inflating the observation covariance matrix.




Inverse Hessian by multigrid approach

S51AaM J. 5o COMPUT. (€1 X XXX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000000

A MULTILEVEL APPROACH FOR COMPUTING THE
LIMITED-MEMORY HESSIAN AND ITS INVERSE IN
VARIATIONAL DATA ASSIMILATION*

KIRSTY L. BROWN!, IGOR GEJADZE!, AND ALISON RAMAGE?

Abstract. Use of data assimilation technigques is becoming increasingly common across many
application areas. The inverse Hessian (and its sguare root) plays an important role in several
different aspects of these processes. In geophysical and engineering applications, the Hessian-vector
product is typically defined by sequential solution of a tangent linear and adjoint problem; for the
inverse Hessian, however, no such definition is possible. Frequently, the requirement to work in a
matrix-free environment means that compact representation schemes are emploved. In this paper,
we propose an enhanced approach based on a new algorithm for constructing a multilevel eigenvalue
decomposition of a given operator, which results in a much more efficient compact representation
of the inverse Hessian (and its square root). After introducing these multilevel approximations, we
investigate their accuracy and demonstrate their efficiency (in terms of reducing memory requirements

and for computational time) using the example of preconditioning a Gauss—Newton minimization
procedure.

Key words. data assimilation, inverse Hessian, limited memory, preconditioning, multigrid
AMS subject classifications. 65K05, 65K10, 15400, 15420

DOI. 10.1137/15M1041407



Inverse Hessian by multigrid approach - 1
Consider symmetric operator in the limited-memory

form: K
AP v =T+ (A = DWR(Wy)" -0
k=1
Basic idea:

1. represent operator on the coarsest grid level

2. use available local preconditioner to improve its eigen-
spectrum

3. build a limited-memory approximation to its inverse, which
forms the basis for the local preconditioner at the next finer
level

4. move up one grid level and repeat



Inverse Hessian by multigrid approach - 2

Multigrid N, = (noun )
structure: ¢ U T ke

A, W|=MLEV D(Ay,N.)
Output:

Size of
eigenvectors:



Inverse Hessian by multigrid approach - 2

Consider symmetric operator in the limited-memory
form: .
AP v=T 04 (N = D)W (Wi)* - v
k=1

Prolongation

Vi = Sk —i Uk. Sppr=1
operator: k k,k—i Uk k,k k
Restriction s _gr o o g
operator: kT ki Tt kfe = 7K

Projection of Ay at a finer grid level k — ¢, 0 < <k

Pr_i(Ar) = Skr—i(Ar — Ix) Sk pe—i + Ik, 0<i<k
Pr(Ar) = Ap.

Projection of Aj_; at a coarser grid level k, 0 <7 < k,

Qr(Ak—i) = Spp—ilAk—i — Le—i) Sk —i + L. 0<i<k
Qr(Ar) = Ak



Inverse Hessian by multigrid approach - 3
Multigrid
N, = (ng.,n1.....n
structure: (70,7415« 5Tk
Multilevel Eigenvalue Decomposition (MLEVD) Algorithm

[A, W]:M'LEVD(AD,NE)
for k=kek.—1.....0

using 7} p+1 and T_,:‘?kJrl from (4--11)
end

Qr(Ao) = T +1Qr(A0) Tk v 1-

(4-7)
Pu(T 1 2(40) k=0,1,... ke —1; L
Thokir :{ I:( k+1,k+20@, 1 (Ao)) 0L , (4-11a)
. Pr(Qiy (AT e): k=01, k= 1; (4-11b)
Teps1 = o +1.k+ ' ’

k=k.:

.

A—1/2 iy— i (T3 *

Qr(A0) = I+ Y ()2 — Wi (W)
i=1



Inverse Hessian by multigrid approach - 4

Multigrid N, = (noun )
structure: ¢ U T ke

A, W|=MLEV D(Ay,N.)
Output:

Size of
eigenvectors:
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Inverse Hessian by multigrid approach - 5

lllustration: super-compact storage
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Inverse Hessian by multigrid approach -
remarks

1. 'Multilevel eigenvalue decomposition' is a new

concept in linear algebra
2. This decomposition can be used for super-compact

representation of symmetric operators (inverses, square-
roots) arising in discretization of partial differential
equations: Hessian, Schrodinger operator, Laplace

3. Multilevel eigenvalue decomposition can be used for
observation space decomposition in Gauss-Newton and
Newton solvers, thus enables direct parallelization of
control problems
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Implicit control - motivation

Explicit control:
inclusion certain input variables into the active control set.

Implicit (idle) control:

a way of taking into account uncertainty in certain input variables without
considering them as active controls: idea related to the 'nuisance parameter
concept, common in classical and Bayesian statistics.

Nuisance parameters — inputs which affect the design function (Qol) indirectly,
l.e. via estimates of other inputs, otherwise are out of interest.

Examples:

- discharge estimation problem under uncertainty in bathymetry and bed
roughness;

- heat flux at the ocean surface in the presence of model error.
Counterexample:

- forecasting.

Implicit treatment of uncertainty in nuisance parameters is generally achieved
by modifying the likelihood function. In Gaussian case this can be done by
Inflating the observation covariance matrix.




Implicit control - notations

1 . . | . .
J(U) =<||RGU) - Y")|5+ 5|B™*(U — U*)|lz; — inf
2 2 U

- cost-function for U

U, € A - active subset of the full control vector U
U, =U \ U, - passive subset of U

1 1
T(U) = SIBVAGW, U7) = V)3 + 5 |1B7 AU = U3 — inf

- cost-function for U,

Introduce U, = U \ U,, - ’idle’ subset of U
U,, Uy - 'true’/exact and background for U,

Ea=U, —U,, 4= U; — U, - background errors

Assume as before Ele,e;| =0, i.e. B is block-diagonal with B, and B,
Important: Elg,| =0!




Implicit control — formulation and main result - 1

Rewrite J(U ) as follows

J(Ua,Uy) —IIR_W(G(Uaa Ug) — Y3
+§||B;”2(Ua— U Iz + —|| SO, = UNg — Jnf
Consider a modified cost-function
. 1 . ,
TV = SR, T7) = Y + 51 B2 (U — U — it

|
R, = R+ Gy, (0)B,Gi, (D)

Theorem:

The estimators associated to cost-functions J(UY), U,) and J(U?|U,)
are equivalent in the following sense:

for a linear mapping G the optimal solution errors 5U ) and 5U£2) are
identical; thus the solutions U(!) and U(? are identical;

For a non-linear G these solutions match approximately, if the tangent
linear hypothesis is valid.




Implicit control — formulation and main result - 2

Corollary. Under conditions of the Theorem,

E(8U0UT) = E(5U,6UT) = H,/(U)

| _ _
where HQ' — 5;1 + GE;E (U)RQ_IGEIE (U)

In practice, U is not known. We use U* = (U}, Us)" or U = (U, U’

Computing R, v:
Ry = R™'?R,R~?v = v+ R™'\2Gy;, (U)B,Gp; (U)R™?v, v e Y
! Ny
R, = R™1/2 (f +3 (B = Daief ) RV,

i=1
where {3;, z;}, i = 1,..., Ny are leading eigenpairs of R,

0U = (6U,,g,)" - posterior error in the input vector

0U, = H, Y(U) (G5, (0) R, + Bitea — G, (U)R, Gy, (U)e,)




Implicit control — numerical model

dp 0 dp
+la+bp)o—= o (d(ao)i) +ecp+1

o =@z, t), t € (0,T], z € (0,1)

- 1D generalised Burgers’ equation

Dy
ot

@(x,0) =wu(z) - initial condition

(dp/dx)|p=0 = (dp/dz)|r=1 =0 - Neumann boundary conditions
d(p) =do + dy (dip/dﬂi)z , do,dy = const >0 - viscosity coefficient
a(z,t) - advection uncertainty, a(z,t) ~ N (0, B,)

The initial condition u(x)is the quantity of interest, thus included into

the active control set, whereas the advection uncertainty a(zx,t) is
subjected to implicit treatment as a nuisance parameter !

Two cases:
Bylinear case: b =0, d; = 0, nonlinear - otherwise



Implicit control — conditions of numerical tests
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Figure 1. Initial and evolved states: bilinear case (left) and nonlinear case (right).
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Figure 2. Background error standard deviation (left), and correlation functions (right).



Implicit control — inflated observation covariance

Op dp 3] ,

5¢ (a+ bs@)g I (d(w) ) +cp+n

wl =T (w!, ) =kw' "+ (1-k)uw’ -filter to introduce temporal correlations
k; = 1 - full temporal correlation - a(x,t) = a(z)

ki = 0 - no temporal correlation

Vg e e L S e L S LI B e e e e o e
L nonlinear case, advection . Ly nonlinear case k=09 |+— d, (diffusion coef)| -
-DS—:! ] 05k . —a 3 l:advec_ﬁnn coef)| _|
“Re _+:. +~—= ¢ (reaction coef )
- % e |~ e e s+ q (forcing term) |
- 1 - ° -~ Ak a w _]
“—i-;_ B =] " T E-: ’ ‘:-I- 7
= sk ‘. _ 4 = oask N -
- -1.5 k=0 ~ -13
:ml:' .‘l :6: A '.t
= | / ] o= L e ]
= = (=] . e 1%, c? +y
_‘-_-‘,'_!‘:' -2 !..' L=-00 G _@f 2 ‘.“ ..=t+ _
- '-./ ro / - 3 . a:+ 4
25 k=10 e k=05 - Tooay 2A5F . ‘; t*+++ —
ﬁ/ ey ., ey
L - i L Vg a, st i
ey 01% " ey
_3|||||||||||H|||||||||||||||||?||||||||||||||||| _3|||||||||||||||||||||||4|||||||*||-|-||||||||||||||
3 10 15 20 25 30 33 40 45 30 0 3 10 15 20 15 30 35 40 435 30
i, eigenvalue number i, eigervalue number

Figure 3. Scaled eigenvalues of Ry for different k¢ (left), and for different parameters (right). Case A /nonlinear.

R, v =R1? I+Z )z;2L | R~Y?0,

g9 T



Implicit control — numerical results (error)
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Figure 4. Estimation error éu’ by different methods for case A/bilinear (left), and case A /nonlinear (right).
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Implicit control — numerical results (st. dev.)
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Figure 6. Standard deviation og[du] and oy [du] by different methods for
case B /nonlinear



Implicit control — numerical results (discharge)

T
Mar’man_:i_n

- I-Le_Mas-d'Agenais

Figure 9. Garonne river, downstreem part.

"e

20 | T | T | T | T | T | T
18 — reference —
L ,r-’“‘\ ——— estimate CO-IT 4
16 KT~ \\ ------- background ]
I STE A "‘n\\ 4
14 - \ —
L {. I|IIII -
12 -I"-\x —
—_— - '-._-_\_.f..h._‘_‘//\ -
E ol AP —
i~ L B 4

et -
= N T -
Ty A

L T~ A 4
61— R T —
I A
Vs

| I | I | I | I | I | I

100 200 300 400 500 600

N i

Tonneins

Google Earth

cross-section number

Figure 11. Garonne bed elevetion.

Discharge estimation:
the Garonne river at Tonneins, 2010



Implicit control — numerical results (discharge)
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Figure 10. Discharge at Tonneins, 2010.



Implicit control — applicability to forecasting
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Figure 8. Forecast (t = T) standard deviation for case A /bilinear.



Implicit control — biased uncertainty

Case of a biased error ¢, ~ N(¢,.. B,)

Then, it can be represented as &, = &4 + €40,

where ¢, 5 and ¢,, ~ N (0, B,) are respectively the systematic and
random components of £,.

One way to deal with a biased uncertainty would be to include both
components into the control vector and consider minimizing the following
cost-function:

J(UasEq,5:Eqr) = _” lﬂ(U U;) ||£4r ”W‘Eq?s”iﬁ*

1 . . .
4By gl + S BACUn, U — qa— ) = Y15 =, inf

Ua » £q,5:8q,T

An alternative Way IS to include only the systematic part:

J(U Eq,s) = _” 12 (U —U; “u ”W‘Eq,s”fi’

_|| _1}(2( (Ua: U.;; o Eq?s) Y* ||y — inf

Uﬂ_ Eqs

R, = R+ Gy, (0)B,Gl, (D)




mean error, {Su)

Implicit control — numerical results (st. dev.)

035 T | T | T | T | T T I'I_I T T T
- case B, nonlinear . N
=) ol 3- e,z }P (ignored) ]
M| —— 4-e = A(active). e, = Plignored) ]
L= 5- & e Plignared). e I(idls) at (& 4) —
[ | ———- 6-&_ e A(active), e, e T(Edle) at (@ 3) ]
e 7-e e Aactive). e, e IGdle) at (g, 1) m
015 — 5 —
ot .
0.05 R - _
J:u:ls_— - ¥ i
ol i
015 I RN N NN NU ST SN RSN NU NC S S ]
0 01 03 03 0.4 03 05 07 Y] 0e 1
Figure 7. Mean error by different ::'rlethods for case B/ nonlinear.
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Conclusions on the implicit control method

- influence of uncertainties in certain variables on the estimates of other
variables can be eliminated/reduced by considering the former as 'idle’
controls, which implies the implicit treatment via the inflated observation
covariance (in essence, the modified likelihood)

- the difficulties with the control vector extension method include oversizing,
solvability and robustness. The suggested method allows us to alleviate these
difficulties, however the method would only be useful if the active and idle
control sets are properly defined. Here we must use the control set design
approach suggested at the beginning

- the proposed method is feasible for high-dimensional models since the
Inflated observation covariance is represented by a relatively small set of its
largest eigenpairs obtained by means of the Lanczos algorithm. For mildly
nonlinear problem this covariance has to be computed only once

- so far, the method is primarily suited to the case when the quantities of
interest coincide with the active controls or largely dominated by them. As it
stands, the method is not useful for forecasting




Future work

- The suggested control set design method can be generalized to the case when
the full input simultaneously contains active, passive and idle (nuisance) controls

- The method can be generalized to include integrated controls, i.e. control inputs
which are not originally presented in the model. This allows us to assess the
performance of existing DA methods, such as optimal nudging or sub-window
technique

- A few developments to analyse global rather than local design functions can be
suggested

- Important: the presented methodology can be used as a basis for a general
control space decomposition approach (work in progress), which might
eventually lead to a better forecasting algorithm
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